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Abstract—In this paper we develop a framework to select
a subset of sensors from a field in which the sensors have
an ingrained independence structure. Given an arbitrary inde-
pendence pattern, we construct a graph that denotes pairwise
independence between sensors, which means those sensors can
operate simultaneously. The set of all fully-connected subgraphs
(cliques) of this independence graph can form a set of matroid
constraints over which we maximize a submodular objective func-
tion. Since we choose the objective function to be submodular,
the algorithm returns a near-optimal solution with approximation
guarantees. We also argue that this framework generalizes to any
network with a defined independence structure between sensors,
and intuitively models problems where the goal is to gather
information in a complex environment. We apply this framework
to ping sequence optimization for active multistatic sonar arrays
by maximizing sensor coverage and not only achieve significant
performance gains compared to conventional round-robin sensor
selection, but approach optimal performance as well.

[. INTRODUCTION

Sensor selection problems, or more generally subset selec-
tion problems, are important for many applications in areas
such as machine learning and wireless communications [1]—
[4]. This paper addresses general sensor selection, with a
specific focus on sensor networks with interfering sensors,
and we demonstrate improved performance on active multi-
static sonar arrays [5]. As is the case with most optimiza-
tion problems, it would be advantageous for the problem to
be convex. However, framing sensor selection problems as
convex has two main problems. First, sensor selection has
inherently discrete optimization variables since selecting a
sensor is an absolute choice. One cannot “half-choose” a
sensor, and convex optimization requires continuous variables.
Second, convex optimization is unable to handle dependence
constraints between variables. There is no way to enforce
dependent values between variables in a convex framework,
which means if a pair of sensors interfere, convex optimization
provides no guarantee that the two sensors will not be present
in the solution together.

Submodular function optimization (SFO) provides a more
intuitive framework for handling these two problems, since it
inherently uses set functions and can be constrained to opti-
mize over matroids. Matroids are a structure that generalize
the notion of linear independence from vector spaces to set
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Fig. 1: General system diagram for sensor selection.

systems, and can be used to form constraints in SFO. They
will be addressed further in Section II.

The main focus of this paper is modeling sensor networks
as graphs and then using the graph structure to form matroid
constraints in submodular function optimization. SFO can
handle constraints that make problems nonconvex or non-
polynomial (NP) hard and find polynomial time solutions that
are provably optimal or are near-optimal with performance
guarantees [6]. As we will show in Section II, modeling sensor
network interference patterns as an independence graph can
be folded directly into SFO as a series of matroid constraints
[7], [8]. We apply this approach to active multistatic deep-
water sonar arrays, or ping sequence optimization (PSO), in
which we repeatedly optimize to select a subset of buoys
that maximize a probabilistic coverage metric. We detail this
application in Section III. In order to demonstrate the superior
utility of the proposed approach, called SFO-Greedy, we
compare the performance of SFO with matroid constraints to
the standard round-robin sensor selection, single buoy, and
exhaustive search approaches in Section IV.

II. SUBMODULARITY AND INDEPENDENCE GRAPHS

The binary nature of sensor selection makes optimization
difficult. Typically, one represents the sensor nodes in an
indicator vector with a selected sensor node as ones and
unselected sensor nodes as zeros. These independence con-
straints make optimization problems nonconvex. One of the
main contributions of this paper is modeling independence
constraints on the sensor networks.

Submodularity is a property that describes set functions
similar to how convexity describes functions in a continuous
space. For ping sequence optimization, submodular functions
can be used to find optimal subsets of buoys to achieve
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objectives like maximizing coverage of non-interfering buoys,
or maximizing probability of target detection in a target
tracking scenario. Rather than exhaustively searching over all
combinations of subsets, submodular functions provide a fast
and tractable framework to compute a solution [6], [9], [10].

Let the set of available objects, known as the ground set,
be denoted as V. A submodular function f maps a set of
objects denoted by a binary indicator vector of length V to
a real number. The binary indicator vector is represented by
the expression 2V since the variable can take two values and
has length V. As mentioned previously, a value of 1 or O for
the i*" element of the indicator vector denotes the inclusion or
exclusion of of the ¥ element of the ground set V. Therefore,
we can define a submodular function f with the following
inequality.

Definition: A function f :
any A, BCV

fA)+f(B)= f(AUB)+ f(ANB) (M

2V — R is submodular if for

Note that inequality is very similar to the definition of a
convex function, and in fact, submodularity can be viewed as
a discrete analog to convexity [9].

More intuitively, submodularity can be expressed by the
notion of diminishing returns. This means that the incremental
value of the objective function shrinks as more elements of the
ground set are added. Drawn out for a particular sequence of
elements, the objective function looks like either a concave or
convex function sampled at equal intervals. An alternate but
equivalent definition is as follows.

A function f: 2V — R is submodular if for any A C B C
Vand v € V\B

fAAU{o}) = f(A) 2 fF(BU{v}) = f(B) ()

This is the notion of diminishing returns.

Submodularity is very closely tied to structures known as
matroids, which generalize the notion of linear independence
in vector spaces [7]. One can think of matroids as a general-
ization of matrices, which extend the definition of rank beyond
column vectors to arbitrary independent subsets of a ground
set. More importantly, SFO allows for matroid constraints
on the problem, which means you can encode complicated
variable dependence patterns into the problem and obtain
polynomial time solutions. The pair (V,Z) is a matroid if the
family of sets Z satisfies the following three properties:
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This leads us to the independence graphs, where nodes
on the graph represent sensors and edges denote pairwise
independence between sensors. An edge between two sensors,
in other words, means both sensors can be used at the same
time. For this setup, the nodes in any fully connected subgraph
(clique) is an allowable subset. The set of all cliques from
this independence graph G can form a partition matroid if the
stable sets of the complimentary graph G form a partition [11].

Unfortunately, this is not true in general for the independence
graphs generated from the interference patterns in a sensor
field. In these cases, the set of all cliques can be represented
by a set of n matroids, where n equals the number of
maximum size cliques of the graph G. To prove this, consider
a maximum size clique C' in G. Let the independent set be
Z = {I|I C C} and the ground set be C. 7 satisfies the
first property because the empty set is a subset of every set.
7 satisfies the second property because every subset of C' is
included in the definition. It is easy to see that 7 satisfies
the third property, which is also referred to as the basis
exchange property. Consider two subsets C7,Cy C C such
that |C1| < |Cs|. Adding any element i € C2\Cy to Cy
will necessarily be a subset of C since i € C and C; C C.
Therefore, (C,Z) is a matroid, and n maximum size cliques of
a graph can be converted into n matroids. An example of the
independence graph is in Fig. 2d. By turning the interference
pattern of a sensor field into a set of matroid constraints, we
can guarantee that two interfering sensors will not be chosen
in the solution.

ITI. APPLICATION TO PING SEQUENCE OPTIMIZATION

We apply this sensor selection framework to active sonar
arrays, where each buoy has a co-located transmitter and
receiver that operates monostatically. However, since SFO
allows for multiple buoys to be selected, the array functions
multistatically in that multiple receivers are operating simulta-
neously and at potentially overlapping regions. An example of
a spatial buoy arrangement where some of the buoys interfere
can be found in Figs. 2a, 2b, and 2c. The four buoys are
arranged in a diamond pattern with locations represented by
black dots. In Fig. 2a, the blue rings denote the coverage
regions for each buoy and the red rings in Fig. 2b denote the
regions where another buoy will interfere with a given buoy.
Coverage is defined by the probability of target detection for
a buoy. If two interfering buoys transmit simultaneously, the
direct path signal from the first will arrive at the second when
the second buoy’s reflections would arrive. The relationship
between the coverage and interference regions for the buoys
can be found in Fig. 2c. In this arrangement, the buoys across
from each other, i.e. the top and bottom pair and left and right
pair, will interfere with each other, since the buoys in each pair
are in the red interference region of the other buoy. However,
any other pair of buoys can ping simultaneously [5].

We go beyond the conventional approach for buoy selection
by allowing for simultaneous pinging. Specifically, we can
select buoys based on target state that significantly improve
the system’s ability to track existing targets and search for new
targets. We demonstrate the increase in performance compared
to a conventional round-robin approach and optimized single
buoy selection. In addition, our approach allows for simulta-
neous search and track objectives within the system.

In order to find out the maximum number of buoys that
can ping simultaneously, the largest set of nodes is picked
such that all the nodes in the set are connected to every
node in the set. Note that self-loops are implied, since a
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(a) Four buoys (black dots) with coverage regions (blue rings).
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(c) Four buoys (black dots) with coverage regions (blue rings) and
interference regions (red rings).
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(b) Four buoys (black dots) with interference regions (red rings).
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(d) Independence graph for four buoys as nodes with edges that signify
pairwise independence.

Fig. 2: Relationship between the independence graph, coverage regions and interference regions for a four buoy arrangement.

buoy does not interfere with itself. The problem of finding
the largest subset of fully connected nodes is a well known
problem in computer science [12]. Exact methods for solving
this problem run in exponential time, but for reasonable graph
sizes (a hundred vertices), the algorithm runs fairly quickly.
For example, if the graph meets certain conditions, i.e. if the
graph is “planar” or “perfect,” finding the largest clique can be
solved in polynomial time [13]. For the arrangement in Fig. 2c,
there is a four-way tie for largest clique, which are the adjacent
pairs (top and left buoys, left and bottom buoys, bottom and
right buoys, and right and top buoys). The independence graph
for this arrangement is depicted in Fig. 2d. In a real scenario,
the detection regions will not be perfect rings, so one of the
pairs might have better coverage than the others. A more
complicated interference pattern will emerge as the number
of buoys is increased, which is demonstrated in Fig. 3.

Our objective function is a variant of probabilistic coverage.
It utilizes target state estimates to help determine which buoys
are selected. Let V be the set of N buoys b;,¢ = 1...INV.
Let B C V such that B is a clique of G, where G is the

independence graph determined by the interference pattern of
all the buoys b; in V. Let the set of all sets of sensors that form
cliques on the graph be a partition matroid Z. Coverage is a
positive, non-decreasing objective, so the goal is to maximize
the objective function. Then the optimal set of buoys is given
by

M
1
B*:armax—g B 3
%ez M¢=1f¢( ) )

where ¢ = 1,...,M corresponds to the predicted target
locations and M is the number of targets. The functions
fo 1 2v — R are given by the equation

fo(B)=1— ] (1= Pss,) @)

b;eB

where Py, is the probability of detection of buoy b; at
location ¢ determined by a table look-up for pre-computed
probability of detection maps for each buoy.
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Fig. 3: Independence graph for the nine buoys in a 3x3 grid.

We use the greedy algorithm from the SFO toolbox to
solve the above optimization problem [10]. This submodular
objective function is monotonic non-decreasing and subject to
a matroid constraint. Submodular maximization for functions
of this form have been studied and have certain performance
guarantees. For a monotonic non-decreasing objective function
subject to a matroid constraint, the solution has a worse case
performance bound of %, and the bound scales with the number
of matroids, i.e. for £ matroid constraints the worst case
performance bound is %4-1 [14].

Our approach is tracking-centric in that the objective prior-
itizes covering areas where known targets are located, but it
provides good coverage as well. After the algorithm addresses
coverage of the known targets, it adds as many non-interfering
buoys as are available, and thus provides an effective simul-
taneous track and search framework.

IV. EXPERIMENTAL RESULTS

In this section we compare the performance of the proposed
ping sequence optimization algorithm, SFO-Greedy, to the
standard round-robin approach, optimized single buoy selec-
tion, and exhaustive search in a Monte Carlo simulation. For
the experiment, we have nine buoys in a grid pattern, with
each buoy 60 km away from its neighbors. The independence
graph for the buoys can be found in Fig. 3, and the interference
pattern in Fig. 4. We assume the buoys have a probability of
detection of P = 0.8 in the coverage region and P = 0
everywhere else. We assume here that there is no sensor
drift during the experiment. Two targets with random initial
location, constrained to be within the buoy array’s detection
area, and constant velocities are present for each trial. The
experiment consisted of ten thousand trials, and each trial
lasted thirty time-steps or until a target moved out of the
array’s detection area.

For each trial, we initialize the target location and velocity
and pass the initial state estimates into the SFO algorithm.
Based on the objective function output for each target, we sam-
ple the probability that each target has a successful detection
at the next time step and pass in the updated state estimates
for the detected targets. For the round-robin algorithm, we
simply choose the next buoy in the sequence and calculate its
objective function value, and for the optimized single buoy
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Fig. 4: Interference pattern for the nine buoys in a 3x3 grid.

selection, we greedily choose the buoy that provides the best
coverage according to the objective function in (3). We also
compare the proposed algorithm to an exhaustive search over
all possible combinations of non-interfering buoys to see how
close to optimal the greedy approximation is.

Over the course of the trial, we accumulate the objective
function values which form a cumulative probability of detec-
tion (CPD) score for the two algorithms. The mean probability
of detection (PD) scores for each algorithm can be found in
Table I, and a plot of the PD scores over the different trials is
found in Fig. 5.

The results in Table I and Fig. 5 demonstrate the practical
utility of the proposed method. A round-robin approach to
sensor selection detected the targets about 7% of the time on
average, whereas the proposed SFO-Greedy approach detected
the targets over 30% of the time. In addition, the greedy algo-
rithm performed nearly as well as an exhaustive search over all
sets of non-interfering buoys. The results also demonstrate the
advantage of using multiple buoys. By allowing simultaneous
pinging, we gained 50% better coverage over optimized single
buoy selection. The size of the error-bars in Fig. 5 can be
attributed to the fact that nine buoys have gaps in their overall
coverage, so many simulated targets were impossible to detect
given the arrangement. However, in no trial did the round-
robin approach beat the proposed algorithm. The worst case
bound for the greedy algorithm provides a nice floor for worst-
case behavior, but in practice the algorithm is as good as
exhaustively searching over exponential growing sets of non-
interfering buoys.

TABLE 1
Single Buoy Multiple Buoys
Method Round- SFO-Greedy | Exhaustive | SFO-Greedy
robin (Proposed) search (Proposed)
Mean PD | 0.068 0.210 0.320 0.315

Probability of detection (PD) results for Monte Carlo simulation.
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Fig. 5: Probability of detection (PD) results for Monte Carlo
simulation comparing the proposed SFO-Greedy method to
a round-robin strategy for single buoy selection, and SFO-
Greedy to exhaustive search for multiple buoy selection.

V. CONCLUSION

In applying independence graphs to a sensor selection
problem, we demonstrate the utility of submodular function
optimization (SFO) to the problem domain. Specifically for
ping sequence optimization (PSO), SFO allows us go beyond
the standard approach for buoy selection by allowing for
simultaneous pinging. By posing the PSO as a submodular
optimization problem, we are able to derive near-optimal so-
lutions for combinatorial problems. We can select buoys based
on target state that significantly improve the probability of
detecting targets over a standard approach and achieve equiv-
alent performance to an optimal exhaustive search approach.
Moreover, our approach allows for simultaneous search and
track objectives within the system.

We also demonstrate the theoretical advantages of SFO over
convex optimization for sensor selection. Carefully framing
sensor selection problems as convex has two main problems:
the inability to handle discrete optimization variables and inde-
pendence constraints. Submodular function optimization pro-
vides a more intuitive framework for handling these two prob-
lems. It inherently uses set functions and can be constrained
to optimize over matroids, which can be used to encode
complex independence patterns between sensors. Not only can
our proposed use of submodular function optimization handle
complex constraints, but it provides guaranteed near-optimal
polynomial time solutions to combinatorial problems.
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